High accuracy finite difference approximation to solutions of elliptic partial differential equations.

نویسندگان

  • R E Lynch
  • J R Rice
چکیده

A flexible finite difference method is described that gives approximate solutions of linear elliptic partial differential equations, Lu = G, subject to general linear boundary conditions. The method gives high-order accuracy. The values of the unknown approximation function U are determined at mesh points by solving a system of finite difference equations L(h)U = I(h)G. L(h)U is a linear combination of values of U at points of a standard stencil (9-point for two-dimensional problems, 27-point for three-dimensional) and I(h)G is a linear combination of values of the given function G at mesh points as well as at other points. A local calculation is carried out to determine the coefficients of the operators L(h) and I(h) so that the approximation is exact on a specific linear space of functions. Having the coefficients of each difference equation, one solves the resulting system by standard techniques to obtain U at all interior mesh points. Special cases generalize the well-known 0(h(6)) approximation of smooth solutions of the Poisson equation to 0(h(6)) approximation for the variable coefficient equation -div(p grad[u]) + Fu = G. The method can be applied to other than elliptic problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 75 6  شماره 

صفحات  -

تاریخ انتشار 1978